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Abstract— Road friction estimation concerns inference of the
coefficient between the tire and road surface to facilitate
active safety features. Current state-of-the-art methods lack
generalization capability to cope with different tire character-
istics and models are restricted when using Bayesian inference
in estimation while recent supervised learning methods lack
uncertainty prediction on estimates. This paper introduces
variational inference to approximate intractable posterior of
friction estimate and learns amortized variational inference
model from tire measurement data to facilitate probabilistic
estimation while sustaining the flexibility of tire models. As a
by-product, a probabilistic tire model can be learned jointly
with friction estimator model. Experiments on simulated and
field test data show that the learned friction estimator provides
accurate estimates with robust uncertainty measure in a wide
range of tire excitation levels. Meanwhile, the learned tire model
reflects well-studied tire characteristics from field test data.

I. INTRODUCTION

The Tire-Road friction coefficient, commonly referred to as
road friction, is defined by the maximum ratio between hor-
izontal and nominal tire forces in the tire coordinate system
[1]. Applications of friction coefficient on Advanced Driver
Assistant System (ADAS) and Autonomous Driving (AD) to
better control vehicle responses has been proposed such in
Adaptive Cruise Control [2], Autonomous Emergency Brak-
ing [3] and Electronic Stability Control [4]. The significance
on accurate and real-time road friction estimation has been
addressed in both research community and industry over
the last few decades [1], [5]–[8]. Gustafsson in [5] utilizes
sensitive indication of friction from longitudinal stiffness at
low tire excitation. Svendenius in [7] utilizes longitudinal
slip and force to estimate friction at higher excitation.
Nevertheless, these vehicle dynamics-based methods only
performs with acceptable accuracy in a narrow estimation
range and significant excitation of tires is required for high
estimation accuracy for most of methods [9]. Furthermore,
the tractability of Bayesian inference in estimation restricts
tire and vehicle models to be simple to further impedes
accurate estimation by using more flexible tire model. To
sustain the estimation performance at most of tire excitation
levels, [8] proposes to fuse estimates from multiple indi-
vidual estimation module using different tire characteristics.
However, it is difficult to generalize the method to all types
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of tires and surfaces and requires significant efforts to model
and tune.

Due to the limitations in estimation algorithms in Bayesian
framework, recent works resort to pure data-driven methods
using supervised learning techniques to model complicated
relations between tire, vehicle states and friction coefficient,
while others leverage other information resources e.g. road
unevenness [10], [11], video sequences of road segments
[12], weather information [13] to extract friction coefficient.
Such formulations have three main disadvantages: overfitting
brought by supervised learning degrades the performance
of estimator in practice; point estimates without uncertainty
measure makes it impossible to scrutinize wrong estimates
which possibly leads to serious consequences like road
accidents; indirect indication of friction coefficient from such
as road unevenness, pixels of road segments only reveals
partial causal relation without considering tire involvement.

To better extract tire-road friction information, we consider
tire as a probe sensor and estimate the coefficient by tire
response. In order to remove the restriction in modeling by
Naı̈ve Bayesian inference, we propose variational inference
to approximate the intractable estimation, and the amortized
variational model could be learned in advance from tire
measurement data and applied in real-time. The main con-
tributions of this paper are:

• The proposed data-driven approach facilitates the es-
timation algorithm to infer friction regardless of tire
characteristics and excitation levels, without labors on
hand-craft algorithms and tuning;

• The friction estimator alleviates the restriction in com-
plexity of tire modeling and utilizes tire forces and
moments collectively to extract hidden information on
friction with greater accuracy and confidence;

• The friction estimator keeps the merit of Bayesian
framework to infer the distribution of estimates, al-
lowing low-confidence estimates to be scrutinized and
to apply on e.g. conservative or aggressive control
strategies according to use cases;

• The learned tire model, as an by-product, illustrating
well-studied tire characteristics provides an alternative
tool in accurate tire modelling for simulation and tire
characteristics studies.

We present the paper as follows: Section II formulates
friction estimation as a Bayesian inference and clarifies
the fundamental difficulties of naı̈ve approach; Section III
introduces amortized variational inference model for friction



estimation and model tire as a generative model, and de-
scribes how these models are learned from data; Section
IV demonstrates the validity of the proposed method on
simulated and field test data.

II. FRICTION ESTIMATION AS BAYESIAN INFERENCE

In most of well-studied analytic and empirical steady-state
tire models such as Brush model, Dugoff model, Magic
Formula [14], MF-Tyre [15], friction coefficient is a deter-
minant factor. As shown in Fig. 1a, friction coefficient (i.e.
typical dry and icy road surface) not only affects lateral
force maximum, but also the combined slip effects. The
same observations could be found in longitudinal force and
other tire moments [15], as Fig. 1b shows the combined
slip effect on dried surface in detail as Fig. 1a. Therefore,
more accurate estimates are expected when using forces and
moments altogether. Considering friction coefficient µ and
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Fig. 1: Combined slip correction on tire forces of Magic
Formula on varied road surfaces.

tire state variables, tire model reveals their relations to tire
forces and moments, F, in terms of a function T(µ, ·). To
keep the formulation intact, we leave all tire state variables
as (·). It can be defined according to the complexity of
tire models, which commonly includes longitudinal slip and
lateral slip, inclination angle and etc. Given tire forces and
state variables, friction coefficient estimation can be viewed
as a Bayesian inference problem to compute the conditional
posterior p(µ|F, ·) using Bayes rule [6]:

p(µ|F, ·) = p(F|µ, ·)p(µ)∫
p(F|µ, ·)p(µ)dµ

=
p(F|T(µ, ·))p(µ)∫
p(F|T(µ, ·))p(µ)dµ

,

(1)
where p(F|µ, ·) is conditional likelihood of F given µ and
p(µ) is prior of friction coefficient. However, the exact
estimation by eq.(1) is commonly impossible at all tire
performance ranges in practice. It is tractable unless when
prior is a Gaussian distribution and tire model T(µ, ·) is
a linear function of µ, which is contradictory to the non-
linearity of tire models in larger slip regions [16]. There are
two trendy solutions, however, leading to new issues.

A common practice is to approximate the integral in eq.(1)
by summation, by replacing the continuous variable µ

with a pre-defined set of J discrete hypotheses U =
{U1,U2, . . . ,Uj , . . . ,UJ} [6]. Thus, the intractable posterior
is simplified as:

P (µ = Uj |F, ·) =
P (F|µ = Uj , ·)P (µ = UJ)∑
i P (F|µ = Ui, ·)P (µ = Ui)

. (2)

A critical difficulty brought by this approximation is the
interpretation of the posterior p(µ = Uj |F, ·). p(µ = Ui|F, ·)
is a cumulative probability instead of a probability density at
Ui. Nevertheless, the unspecified intervals of the cumulative
probability is impossible to properly defined, which makes
it difficult for later decision making algorithm design.

The another option is to approximate nonlinear tire model
T(µ, ·) by piece-wise linear function to ensure estimation is
exact locally [9]. The exact estimate is computed for each
specific performance region and integration rule fuses all
estimates. To compensate model inaccuracy, [8] proposes to
fuse estimates from multiple estimate algorithms according
to different tire characteristics. However, this approximation
increases computational cost if tire model needs complex
combination of multiple functions which might makes it
impossible in real time. Secondly, due to complication of
behavior in different types of tire, this methods requires
substantial experiments in designing estimation and fusion
algorithm, limiting its applicability to general types of tires.

We know that the combined slip effect of tire leads to more
accurate and confident estimation of friction, however, exact
inference is impossible in practice. To keep the inference
tractable, but maintain the flexibility of tire models, we
leverage approximation of exact inference. Although exact
inference is of interest, approximate inference is adequate for
decision making i.e. determining speed or activating ADAS
functions accordingly. There are two main categories of
approximation methods for Bayesian inference: deterministic
approximations, such as variational Bayes and expectation
propagation, and stochastic approximation such as Monte
Carlo methods. In general, Monte Carlo methods require a
sufficiently large sample size for unbiased estimation, which
is not perferable for real-time estimation. On the other hand,
variational inference uses a variational distribution q(µ|F, ·)
from a tractable family Q to approximate true posterior [17].
We will discuss variational inference for friction estimation
in detail in next section.

III. AMORTIZED VARIATIONAL INFERENCE FOR
FRICTION ESTIMATION

Variational inference is to use a variational distribution
q(µ|F, ·) as approximation of true posterior p(µ|F, ·) from
a tractable family Q. The optimal variational distribution
q∗(µ|F, ·) is obtained when KL divergence between the
variational distribution q(µ|F, ·) and true posterior p(µ|F, ·)
is minimized to zero. Nevertheless, true posterior is unknown
therefore to be approximated, so direct minimization of
KL divergence is not possible. Instead of minimizing KL
divergence, variational inference solves the dual problem of



it by maximizing the lower bound of marginal likelihood of
observable variables. As seen in previous section, the observ-
able variables are forces and moments measurements, F. The
log-marginal likelihood p(F|·) of it could be decomposed
into two parts:

log p(F|·) = log

∫
p(F|µ, ·)p(µ)dµ

= L+KL(q(µ|F, ·)||p(µ|F, ·)),
(3)

where KL(qφ(µ|F, ·)||p(µ|F, ·)) is the KL divergence be-
tween the variational and true posterior, and L, also called the
Evidence Lower Bound (ELBO). Therefore, minimizing the
second term is equivalent to maximizing L since log p(F|·)
is a constant. Instead of online optimization on each new data
points, we use amortized variational inference by specifying
a set of parameters, φ, to model variational distribution.
The joint likelihood p(F, µ|·) could be considered as a
generative model with conditional likelihood p(F|T(µ, ·))
and prior p(µ) of a latent variable µ. We also parameterize
the generative model by a set of parameters, θ. To be noted,
pθ(F|µ, ·) could be given by any analytic or fitted empirical
tire models or learned from data. Using parameterization on
variational posterior and generative model, L is composed
of two terms:

L = Eqφ(µ|F,·) log pθ(F|µ, ·)−KL(qφ(µ|F, ·)||p(µ)), (4)

The first term is the expectation of the conditional distri-
bution over the variational posterior; the second term is the
KL divergence between variational posterior and prior. In
principal, the variational posterior qφ(µ|F, ·), conditional
likelihood pθ(F|µ, ·) and prior p(µ) could be chosen from
any distribution family as long as ELBO could be computed
analytically or easy to estimate. For convenience, we specify
the variational posterior qφ(µ|F, ·) and prior p(µ) as Gaus-
sian distributions, so that the KL divergence term in eq.(4)
has an analytical solution [18]. Similarly, the conditional
likelihood pθ(F|µ, ·) is specified as a Gaussian distribution
with a diagonal covariance matrix to simplify the model.
Both parameters θ and φ are modelled by multi-layer neural
networks (MLP). In summary,

F ∼ pθ(F|µ, ·) = N (vθ(µ, ·), diag(σ2
θ(µ, ·)))

µ ∼ qφ(µ|F, ·) = N (vφ(F, ·), σ2
φ(F, ·)),

(5)

where vθ(µ, ·) and σ2
θ(µ, ·) are the mean and variance of

the conditional likelihood of F, while vφ(F, ·) and σ2
φ(F, ·)

are the mean and variance of the variational posterior of
µ respectively. With a non-informative Gaussian prior, the
inferred latent variable µ might not directly correspond to the
actual meaningful friction coefficient, which would require to
learn an extra mapping between the coefficient and inferred
latent variable. To avoid it, we use an informative Gaussian
prior during training instead. Similar to the semi-supervised
learning setup in [18], a part of training data has prior
N (µGT , σ

2) with mean as the ground truth µGT and variance
σ2 as the function of tire state variables σ2(·) to account for
data inaccuracy.

The expectation term in eq.(4) can then be estimated using
reparameterization trick [19]:

Eqφ(µ|F,·) log pθ(F|µ, ·) = EN (ε;0,1) log pθ(F|µ̃, ·)
µ̃ = vφ(F, ·) + σ2

φ(F, ·)ε ε ∼ N (0, 1),
(6)

where µ̃ is sampled from variational posterior qφ(µ|F, ·) and
ε is a random variable sampled from Gaussian. Reparameter-
ization trick allows for automatic differentiation to optimize
θ and φ using auxiliary random variable ε to avoid stochastic
variable µ̃ blocking the differentiation chain, and decreases
variance of estimates. Fig. 2 illustrates the amortized vari-
ational friction estimator qφ(µ|F, ·) and probabilistic tire
model pθ(F|µ, ·).

Fig. 2: Neural network topology of the probabilistic tire
model pθ(F|µ, ·) and variational friction coefficient esti-
mator qφ(µ|F, ·). The reparameterization trick [19] enables
automatic differentiation with µ̃ sampled from qφ(µ|F, ·).

The optimization of ELBO w.r.t. θ and φ is done jointly by
stochastic gradient variational Bayes [19], using unbiased
estimates of gradients:

5θ,φL = EN (ε|0,1)[5θ,φ log pθ(F|vφ(F, ·) + σ2
φ(F, ·)ε)]

−5θ,φKL(qφ(µ|F, ·)||p(µ)).

IV. EXPERIMENTS

To prove the validity of the proposed method, we evaluate
learned variational friction estimator qφ(µ|F, ·) and prob-
abilistic tire model pθ(F|µ, ·) on both simulated and tire
trailer field test data. In order not to introduce additional
heuristics, we only select the most dominant tire states
including longitudinal slip s, lateral slip α and nominal tire
force Fz , and force vector F including longitudinal and
lateral tire forces Fx, Fy .

A. Simulation experiments

As opposed to [20] that simulates tire states directly from
MF-Tyre, we set up different driving maneuvers and road
profiles in IPG CarMakerr to create a more realistic dataset.
Compared to [20], simulated data here is unbalanced in lon-
gitudinal and lateral excitation levels which makes learning
harder, but evaluation closer to reality.

1) Scenarios and maneuvers: CarMaker simulations run
on different handling maneuvers and road profiles setups.
Table I lists all definitions of used maneuvers, their covering
ranges of longitudinal and lateral slip and variants in defined



maneuvers. These maneuvers, corresponding to various tire
responses under realistic driving, are to better understand the
generalization of learned friction estimator and probabilistic
tire model on different slip ranges especially for unseen
scenarios. Some in Table I are defined similarly as [21], while
others are commonly used in testing and verification purpose
for vehicle dynamics. Road surfaces are defined by patches
of 10 discrete friction coefficient from 0.1 to 1.0. The tire
models used in simulations are 245 35/R19 for front and
295 35/R19 for rear tire.

TABLE I: Handling maneuvers for data generation in Car-
Maker

Maneuver Longitudinal
slip range

Lateral slip
range

Variants in maneuvers

B/A a M ∼ H L ∼ M b Speed profile
LC-ISO c L ∼ H d M ∼ H e Entry speed

SSR f L ∼ M g M ∼ H
Steering angle
(according to radius
of track), speed

SIS h L ∼ M g ∼ H
e M ∼ H

Speed, amplitude and
frequency of steering
angle

SS i L ∼ M, H d M ∼ H
Steer angle
amplitude, entry and
final speed

Slalom18 L ∼ M ∼ H e M ∼ H Entry speed
Slalom36 L ∼ M ∼ H e M ∼ H Entry speed

CB j H M ∼ H Entry speed, steering
angle

CHB k M ∼ H H Entry speed, steering
angle

CBM l M ∼ H H Entry speed, steering
angle

BC m H M ∼ H e Entry speed,
deceleration

HSW n L ∼ M H
Entry speed,
amplitude and period
of steering angle

a B/A: Braking and acceleration
b steering involved on the low friction surface
c LC-ISO: ISO Lane Change
d braking involved on the low friction surface
e lose stability on the low friction surface
f SSR: Steady state radius cornering
g during acceleration
h SIS: Sine steering
i SS: Steering step
j CB: Cornering mild brake
k CHB: Cornering hard brake
l CBM: Cornering brake with friction split surface
m BC: Braking with minor steering
n HSW: High speed steering with sine dwell

The ranges of longitudinal and lateral slips in Table I are
defined as low L, medium M and high H according to their
excitation level (i.e. a typical low friction excitation level is
defined as |α| < 0.05[rad], |s| < 0.02) [9]. 129 simulation
runs, in total, will be used as following: 17 B/A, 8 LC-ISO,
10 SSR, 10 SIS, 10 SS, 8 CB, 8 CHB, 22 CBM, 7 BC, 10
HSW, 9 Slalom 36, 10 Slalom 18m. White noise is added
to simulated data to mimic the measurement error. But each
noise is defined by different standard deviation for different

variables due to difference in scale: 100N for forces in all
directions; 10 % of the absolute value of longitudinal and
lateral slips. To evaluate the generalization performance of
the learned friction estimators and tire models, we split data
from 129 runs into training and test datasets: training set
includes 9 B/A, 13 CBM, 6 LC-ISO, 9 SIS, 8 Slalom 18,
7 Slalom 36, 5 SSR, 8 SS, test set includes some from the
same maneuvers but different surfaces as training set - 8
B/A, 9 CBM, 5 SSR, 2 Slalom 36, 2 Slalom 18, 2 LC-ISO,
1 SIS, 2 SS, and 4 more extreme maneuvers - 8 test runs
of CB, 7 BC, 10 HSW and CHB. Fig. 3 shows training and
test data distributions in terms of longitudinal slip rate and
lateral slip angle. Both datasets cover wide ranges of slips
and two distributions are similar although they are generated
from different maneuvers and road profiles .
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Fig. 3: Training and test data coverage comparison on longi-
tudinal and lateral slip. Both x-axis and y-axis are specified
in log scale.

2) Results and discussion: The MLP used for the friction
estimator includes 3 layers of 20, 100, 2 of hidden units,
and that of the tire model has layers of 20, 100 and 4
of hidden units1. Optimization is done by Adam [22] with
default settings. Models are trained until convergence.

Qualitative evaluation on estimation accuracy and uncer-
tainty

Fig. 4a shows average absolute errors of friction between
estimated mean vφ and ground truth µGT under different
slips on the test data. In most of slip zones, average error
is less than 0.1. It is clear that when either longitudi-
nal or lateral slip enters into intermediate excitation levels
(|s| > 0.03 or |α| > 0.03[rad]), the estimation errors drop
significantly. Thus, inference friction from multiple forces
lows the requirement of tire excitation to reach adequate
accuracy when either longitudinal or lateral direction to reach
the intermediate levels, compared to the estimators that only
utilize single force. As clearly observed from figure 1, at
low slips, it is more difficult to differentiate forces under
different friction levels so that friction information is harder
to be extracted. It is expected that the average estimation
error would increase with decreasing absolute longitudinal
slip rates and lateral slip angles. However, estimation error
is fairly low at extremely low slip range (under ±10−4) in
1 More implementation details are available at
https://ssajj1212.github.io/publication/rfe vi, including a detailed description
of simulation data and setup in Carmaker.

https://ssajj1212.github.io/publication/rfe_vi
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Fig. 4: Performance of learned friction estimator on test data with regard of different longitudinal and lateral slip ranges.

TABLE II: Performance evaluation of friction inference and tire model compared to ground truth on test data

Ground truth within i Friction inference µ Longitudinal force Fx Lateral force Fy

confidence interval Training Test Training Test Training Test
68% 96.88 % 93.93 % 98.51 % 97.84 % 97.22 % 98.27 %
95% 98.97 % 96.66 % 99.30 % 98.91 % 98.72 % 99.12 %
99% 99.37 % 97.52 % 99.45 % 99.15 % 98.98 % 99.33 %

Fig. 4a. This phenomenon is mainly explained by the scarcity
of data and unbalanced distribution of friction. A majority
of data in this region come from high friction road profiles.
The learned estimator succeeds to figure out to give biased
but still accurate estimation. High estimation error regions
concentrate at the neighborhood of lateral slip angles of
about ±π2 ·10

−3[rad] where data comes from various friction
profiles and maneuvers, but the excitation level is still too low
to estimate accurately at the linear region. Since we specify
approximation posterior as gaussian distribution, standard
deviation directly reveals estimate uncertainty. Fig. 4b clearly
shows that the uncertainty of estimates increases with de-
creasing tire excitation due to the difficulty of estimation
in the linear region. Similarly, the standard deviation drops
immediately when slip exits linear range in any direction.

Quantitative evaluation on estimate robustness

Robust uncertainty prediction prevents decision making al-
gorithm from trusting less confident estimates since ac-
cepting overconfidently wrong estimates could potentially
cause crashes especially when using point estimates by
supervised learning methods. Although Fig. 4a and Fig. 4b
show satisfying friction estimator qualitatively, quantitative
evaluation could give us a better understanding on estimator
performance. To quantify the performance of both learned
friction estimator and probabilistic tire model, we evaluate
the friction inference qφ(µ|F, s, α, Fz) on test data to actual
friction by mean standardized log loss (MSLL) [23]. The
metric is defined by considering the negative log probability
of target µGT given the estimation mean vφ and standard
deviation σφ:

− log p(µGT |vφ, σφ) =
1

2
log(2πσ2

φ) +
(µGT − vφ)2

2σ2
φ

, (7)

where MSLL is computed by taking the mean of the negative
log probability over test points. The lower the MSLL is,

the better the estimation complies with its target. And it
penalizes over-confidently wrong estimates especially when
the target µGT does not fit in the estimated distribution
qφ(µ|F, s, α, Fz), e.g. lying out of 68% confidence interval
(or 1 standard deviation of estimate). Fig. 4c shows MSLL
in each slip range on the test data. In most slip regions,
MSLL remains less than 0 which illustrates that the target
of friction is in the inference distribution and the estimation
error is low. MSLLs are relatively large at few regions where
longitudinal slip rates are around 0.02 and lateral slip angle
close to π

2 · 10
−2[rad]. From previous qualitative analysis,

in these regions, the average variance is comparatively low
while the estimation error is high, thus the estimations are
over-confidently wrong to make MSLLs large. Although
estimation errors are large in low excitation regions as shown
Fig.4a, the estimator succeeds to give under-confidence in-
dications of estimations so that MSLLs are low.

Although MSLL is a well-behaved evaluation metric on
robustness analysis, the averaged MSLL in each region could
lead to under-estimation on friction estimator performance.
The penalty of MSLL on overconfidently wrong estimations
grows exponentially. Few poor estimates make MSLL de-
clines substantially even though the estimator performs well
on the majority of test samples. Therefore, we also report
the percentage of data points having ground truth within
68%, 95% and 99% confidence intervals of the estimation
distributions as an alternative metric. Table II shows the ratio
of three confidence intervals on both training and test data.
93.93% of test data have true frictions within 68% confidence
interval of estimates and only about 6% fail to give high-
quality estimates. Comparing the estimation performance on
training and test data under the same metrics, no substantial
drop is observed despite the fact that training and test
samples are from different maneuvers and road profiles.
Therefore, the learned friction estimator is well generalized
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Fig. 5: Average error and standard deviation of probabilistic tire model on test data
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Fig. 6: Estimation error distribution comparison between probabilistic and deterministic friction estimator.

even to unseen scenarios. Fig. 4d shows the ratios of test
data within the 95% confidence interval of estimations at
different slips. The primary conclusion complies with that
of MSLL: the friction estimator gives an accurate estimation
mean with a reliable measure of confidence. However, at
the peak regions of MSLLs in figure 4c, over 50% of
test samples are still well estimated, albeit high MSLLs.
Hence, large MSLL errors do not necessarily imply poor
performance, if these errors only occur from few extremes.
In addition, the regions of the worst performance according
to 95% confidence interval are similar to the ones with high
estimation error in figure 4a, except from the ones at low
excitation levels. The correct indications of uncertainty at
low excitation regions counteract for high estimation errors,
thus the ratios of 95% confidence interval as well as MSLLs,
are high instead.

Qualitative and Quantitative evaluation on learned tire
model

The same evaluation metrics are applied to access the per-
formance of the probabilistic tire model. Fig. 5a and Fig.
5b show average absolute errors and standard deviations of
learned probabilistic tire model pθ(F|µ, s, α, Fz) for longitu-
dinal Fx and lateral force Fy in each slip zone respectively.
Relative to the friction estimates, the normalized errors of
force estimations are much smaller. At the linear range of
the tire model, forces are similar at different friction levels,
therefore the errors are relatively small in Fig. 5a and Fig. 5b.
Conversely to friction estimator, higher error regions of force
prediction are close to boundary of linear and non-linear
regions in tire model. Except from these regions, standard
deviations for both force estimates are rather low. The strong
association between high estimation errors and high standard
deviation, it is concluded that the standard deviation indicates
uncertainty properly. The unsymmetrical estimation errors
and standard deviations on positive and negative lateral slips

are mainly caused by unbalanced simulations setup that
more tests are anti-clockwise turnings than clockwise ones.
Table II reports ratios of well behaved estimates under three
different confidence intervals on both training and test data.
For both longitudinal and lateral tire forces, about 98% of
test points have true forces lying within the 68% confidence
interval, and about 99% lying within the 95% confidence
interval. The learned tire model is capable of predicting
correct force estimates regardless of unbalanced and noisy
data. It is likely that learned models, such as ours, provide an
alternative to current state-of-the-art curve fitting techniques
used in tire industry and to improve vehicle state estimation
algorithms as in [20], [21].

Comparison to deterministic friction estimator

To further illustrate the advantage of probabilistic inference
of friction over the point estimate by supervised learning, we
compare a deterministic friction estimator to a probabilistic
one using the same neural networks architecture, and learned
from the same data. Given true friction, and noisy forces
and slips, the deterministic model learns by minimizing the
L2 loss as [20], [24]. Both deterministic and probabilistic
friction estimators succeed to converge at similar training
losses. Fig. 6 shows the distribution of absolute estimation
error between the estimate from the deterministic model to
ground truth and that of probabilistic model between the
ground truth and estimated mean on test data. For both
models, the majority of estimation error is under 0.2 and
estimations with large errors are relatively rare. In addition,
the probabilistic model outperforms the deterministic model
when estimation errors are less than 0.1. Fig. 6 also shows the
average standard deviation of the probabilistic estimation in
each error range. The average standard deviation increases
slightly with the increase in absolute error under 0.5. The
estimation confidence from the probabilistic model can be
used to prune poor estimates from further consideration,



whereas the deterministic model is not capable of distin-
guishing between poor estimates and better ones. In spite of
the expected behavior of the probabilistic friction estimator
on most test data, there is a small fraction of outliers for
which both mean and standard deviation estimates are wrong.
These outliers explains the decrease in standard deviation for
errors larger than 0.5.

B. Field test

To verify the proposed method on real data, field tests
were conducted to provide measurements from the test track
located in Jokkmokk, Sweden. The test track offers homoge-
neous friction surfaces during test runs. High-quality force
and moment measurements were collected by a Tire Test
Trailer. Tests are on low-friction surfaces i.e. scraped ice, ice,
soft packed snow, water and etc, corresponding to different
friction coefficients of surfaces. Due to the limitation of the
Tire Test Trailer, combined slip tests are only executed under
fixed lateral slip angles with varying longitudinal slip rates
and only under negative longitudinal slips. Fig. 7 shows both
training and test data distributions on longitudinal slip rates
and lateral slip angles. Data concentrates on low longitudinal
slip rates and lateral slip angles, and is distributed at discrete
lateral slip angles except when the longitudinal slip rate is
0.
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Fig. 7: Data distribution of field test data regarding longitu-
dinal slip rate and lateral slip angle.
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Evaluation on friction estimator

Similar to simulation, we only utilize longitudinal and lateral
forces as the force vector F, longitudinal slip rate s, lateral

slip angle α, and nominal force Fz in training. Fig. 8 shows
average absolute estimation error and standard deviation
of learned friction estimator. The average error in friction
estimates, the difference between estimated mean and ground
truth, is under 0.02, and large longitudinal slip rates lead
to small estimation errors. Since data collected from the
field tests are mainly from low to medium friction surfaces,
the estimation is easier, therefore, more accurate for the
field tests compared to simulation. Errors decrease rapidly
when either longitudinal or lateral slip leaves linear region
of tire model in the field test as simulation data. However,
errors grow slightly with increasing lateral slip angles at 0
longitudinal slip rate for the field test data. The main cause
of this is insufficient data at high excitation of lateral slip, as
shown in figure 7. Regarding quantitative evaluation, MSLLs
are under 0 in all regions. The learned friction estimator
from real tire measurement is able to provide estimates with
limited errors and reasonable uncertainty estimates.

Evaluation on probabilistic tire model

To evaluate the learned tire model, we use tests on a scraped
ice surface which has a friction coefficient of about 0.42,
under three different vertical load levels of about 3142N,
6427N, and 9536N. Fig. 9 shows the mean of longitudinal
and lateral forces of the learned tire model at each nominal
force respectively comparing to actual data points. It is
clearly shown that the learned tire model performs well in a
wide range of longitudinal and lateral slips at each nominal
force. The combined slip effect is indeed learned for both
forces, which means that correction of combined slip by
analytical or empirical model like Magic Formula could be
revealed from data. Although slips in both longitudinal and
lateral directions are not evenly distributed and discrete, the
learned tire model is smooth and captures the combined
slip characteristics of the tire model under different nominal
forces.

V. CONCLUSION

The proposed amortized variational friction estimator fa-
cilitates the approximation of exact Bayesian inference to
facilitate uncertainty prediction of estimates without com-
promising the flexibility of tire models. From simulation
and field test experiments, the learned friction estimator is
proved to give accurate friction estimation in the wide range
of excitation levels of tire, on various unseen friction surfaces
and maneuvers. The required excitation levels for accurate
estimates is lowered compared to common estimation algo-
rithm. Measures of uncertainty is robust enough to provide
correct indications of estimate confidence to enable ADAS
or Autonomous driving functions to be activated accord-
ingly. Learning from data leads more accurate modeling and
minimizes labors in manually design and tune estimation
algorithms for different tires. Meanwhile, proposed method
could learn tire model without prior knowledge. The learned
model well reflects tire characteristics in both simulation
and field test, which possibly helps to reveal more tire
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Fig. 9: Longitudinal and lateral tire forces of learned tire model given various nominal loads compared to test data with the
same load ±1000N on a surface with friction coefficient of about 0.42.

characteristics and provides more realistic tire behaviors in
future simulations.
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